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Abstract. We present a novel framework, namely AADMM, for acceleration of linearized alternating direction method of
multipliers (ADMM). The basic idea of AADMM is to incorporate a multi-step acceleration scheme into linearized ADMM. We
demonstrate that for solving a class of convex composite optimization with linear constraints, the rate of convergence of AADMM
is better than that of linearized ADMM, in terms of their dependence on the Lipschitz constant of the smooth component.
Moreover, AADMM is capable to deal with the situation when the feasible region is unbounded, as long as the corresponding
saddle point problem has a solution. A backtracking algorithm is also proposed for practical performance.

1. Introduction. Assume that W , X and Y are finite dimensional vectorial spaces equipped with inner
product 〈·, ·〉, norm ‖ · ‖ and conjugate norm ‖ · ‖∗. Our problem of interest is the following affine equality
constrained composite optimization (AECCO) problem:

min
x∈X,w∈W

G(x) + F (w), s. t. Bw −Kx = b, (1.1)

where X ⊆ X is a closed convex set, G(·) : X → R and F (·) : W → R are finitely valued, convex and lower
semi-continuous functions, and K : X → Y, B :W → Y are bounded linear operators.

In this paper, we assume that F (·) is simple, in the sense that the optimization problem

min
w∈W

η

2
‖w − c‖2 + F (w), where c ∈ W , η ∈ R (1.2)

can be solved efficiently. We will use the term “simple” in this sense throughout this paper, and use the term
“non-simple” in the opposite sense. We assume that G(·) is non-simple, continuously differentiable, and that
there exists LG > 0 such that

G(x2)−G(x1)− 〈∇G(x1), x2 − x1〉 ≤
LG

2
‖x2 − x1‖2, ∀x1 ∈ X, x2 ∈ X. (1.3)

One special case of the AECCO problem in (1.1) is when B = I and b = 0. Under this situation, problem
(1.1) is equivalent to the following unconstrained composite optimization (UCO) problem:

min
x∈X

f(x) := G(x) + F (Kx). (1.4)

Both AECCO and UCO can be reformulated as saddle point problems. By the method of Lagrangian
multipliers, the AECCO problem (1.1) is equivalent to the following saddle point problem:

min
x∈X,w∈W

max
y∈Y

G(x) + F (w)− 〈y,Bw −Kx− b〉. (1.5)

The AECCO and UCO problems have found numerous applications in machine learning and image processing.
In most application, G(·) is known as the fidelity term and F (·) is the regularization term. For example,
consider the following two dimensional total variation (TV) based image reconstruction problem

min
x∈Fn

1

2
‖Ax− c‖2 + λ‖Dx‖2,1, (1.6)
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where the field F is either R or C, x is the n-vector form of a two-dimensional complex or real valued image,
D : Fn → F2n is the two-dimensional finite difference operator acting on the image x, and

‖y‖2,1 :=
n
∑

i=1

‖(y(2i−1), y(2i))T ‖2, ∀y ∈ F
2n,

where ‖ · ‖2 is the Euclidean norm in R2. In (1.6), the regularization term ‖Dx‖2,1 is the discrete form of TV
semi-norm. By setting G(x) := ‖Ax − c‖2/2, F (·) := ‖ · ‖2,1, K = λD, X = X = Fn and W = F2n, problem
(1.6) becomes a UCO problem in (1.4).

1.1. Notations and terminologies. In this subsection, we describe some necessary assumptions, no-
tations and terminologies that will be used throughout this paper.

We assume that there exists an optimal solution (w∗, x∗) of (1.1) and that there exists y∗ ∈ Y such
that z∗ := (w∗, x∗, y∗) ∈ Z is a saddle point of (1.5), where Z := W × X × Y. We also use the notation
Z := W × X × Y if a set Y ⊆ Y is declared readily. We use f∗ := G(x∗) + F (w∗) to denote the optimal
objective value of problem (1.1). Since UCO problems (1.4) are special cases of AECCO (1.1), we will also
use f∗ to denote the optimal value G(x∗) + F (Kx∗).

In view of (1.1), both the objective function value and the feasibility of the constraint should be considered
when defining approximate solutions of AECCO, henceforth the following definition comes naturally:

Definition 1.1. A pair (w, x) ∈ W ×X is called an (ε, δ)-solution of (1.1) if

G(x) + F (w)− f∗ ≤ ε, and ‖Bw −Kx− b‖ ≤ δ.

We say that (w, x) has primal residual ε and feasibility residual δ. In particular, if (w, x) is an (ε, 0)-solution,
then we simply say that it is an ε-solution.

The feasibility residual δ in Definition 1.1 measures the violation of the equality constraint, and the
primal residual ε measures the gap between the objective value G(x) + F (w) at the approximate solution
and the optimal value f∗. For an (ε, δ)-solution (w, x) where δ > 0, since (w, x) does not satisfy the equality
constraint in (1.1), it is possible that G(x) + F (w) − f∗ < 0. However, as pointed out in [31], a lower bound
of G(x) + F (w) − f∗ is given by

G(x) + F (w) − f∗ ≥ 〈y∗, Bw −Kx− b〉 ≥ −δ‖y∗‖,

where y∗ is a component of z∗ = (w∗, x∗, y∗), a saddle point of (1.5).
In the remainder of this subsection, we introduce some notations that will be used throughout this paper.

The following distance constants will be used for simplicity:

Dw∗,B := ‖B(w1 − w∗)‖, Dx∗,K := ‖K(x1 − x∗)‖, Dx∗ := ‖x1 − x∗‖, Dy∗ := ‖y1 − y∗‖,
DX,K := sup

x1,x2∈X
‖Kx1 −Kx2‖, and DS := sup

s1,s2∈S
‖s1 − s2‖, for any compact set S. (1.7)

For example, for any compact set Y ⊂ Y, we use DY to denote the diameter of Y . In addition, we use
x[t] to denote sequence {xi}ti=1, where xi’s may either be real numbers, or points in vectorial spaces. We
will also equip a few operations on the notation of sequences. Firstly, suppose that V1, V2 are any vector
spaces, v[t+1] ⊂ V1 is any sequence in V1 and A : V1 → V2 is any operator, we use Av[t+1] to denote the

sequence {Avi}t+1
i=1. Secondly, if η[t], τ[t] ⊂ R are any real valued sequences, and L ∈ R is any real number,

then η[t] − Lτ[t] denotes {ηi − Lτi}ti=1. Finally, we denote by η−1
[t] the reciprocal sequence {η−1

i }ti=1 for any

non-zero real valued sequence η[t].

1.2. Augmented Lagrangian and alternating direction method of multipliers. In this paper,
we study AECCO problems from the aspect of the augmented Lagrangian formulation of (1.5):

min
x∈X,w∈W

max
y∈Y

G(x) + F (w)− 〈y,Bw −Kx− b〉+ ρ

2
‖Bw −Kx− b‖2, (1.8)
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where ρ is a penalty parameter. The idea of analyzing (1.8) in order to solve (1.1) is essentially the augmented
Lagrangian method (ALM) by Hestenes [26] and Powell [44] (It is originally called the method of multipliers
in [26, 44]; see also the textbooks, e.g., [5, 41, 6]). The ALM is a special case of the Douglas-Rachford splitting
method [19, 16, 32], which is also an instance of the proximal point algorithm [17, 46]. The iteration complexity
of an inexact version of ALM, where the subproblems are solved iteratively by Nesterov’s method, has been
studied in [30]. One influential variant of ALM is the ADMM algorithm [20, 21], which is an alternating
method for solving (1.8) by minimizing x and w alternatively and then updating the Lagrangian coefficient
y (See [7] for a comprehensive explanation on ALM, ADMM and other algorithms). In compressive sensing
and imaging science, the class of Bregman iterative methods is an application of the ALM and the ADMM.
In particular, the Bregman iterative method [24] is equivalent to ALM, and the split Bregman method [23] is
equivalent to ADMM.

We give a brief review on ADMM, and some of its variants. The scheme of ADMM is described in
Algorithm 1.

Algorithm 1 The alternating direction method of multipliers (ADMM) for solving (1.1)

Choose x1 ∈ X , w1 ∈ W and y1 ∈ Y.
for t = 1, . . . , N − 1 do

xt+1 = argmin
x∈X

G(x) − 〈yt, Bwt −Kx− b〉+ ρ

2
‖Bwt −Kx− b‖2, (1.9)

wt+1 = argmin
w∈W

F (w) − 〈yt, Bw −Kxt+1 − b〉+ ρ

2
‖Bw −Kxt+1 − b‖2, (1.10)

yt+1 = yt − ρ(Bwt+1 −Kxt+1 − b). (1.11)

end for

For non-simple G, a linearized ADMM (L-ADMM) scheme generates iterate xt+1 in (1.9) by

xt+1 = argmin
x∈X

〈∇G(xt), x〉 + 〈yt,Kx〉+ ρ

2
‖Bwt −Kx− b‖2 + η

2
‖x− xt‖2. (1.12)

We may also linearize ‖Bwt −Kx− b‖2, and generate xt+1 by

xt+1 = argmin
x∈X

G(x) + 〈yt,Kx〉 − ρ〈Bwt −Kxt − b,Kx〉+ η

2
‖x− xt‖2, (1.13)

as discussed in [18, 10]. This variant is called the preconditioned ADMM (P-ADMM). If we linearize both
G(x) and ‖Bwt − Kx − b‖2, we have the linearized preconditioned ADMM (LP-ADMM), in which (1.9) is
changed to

xt+1 = argmin
x∈X

〈∇G(xt), x〉+ 〈yt,Kx〉 − ρ〈Bwt −Kxt − b, Ax〉+ η

2
‖x− xt‖2. (1.14)

There has been several works on the convergence analysis and applications of ADMM, L-ADMM, and
P-ADMM. It is shown in [10] that P-ADMM (Algorithm 1 with θ = 1 in [10]) solves the UCO problem with
rate of convergence

O
(‖K‖D2

N

)

,

where N is the number of iterations and D depends on the distances Dx∗ and Dy∗ . There are also several
works concerning the tuning of the stepsize ηt in L-ADMM, including [50, 51, 11].
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For AECCO problems, in [34] ADMM is treated as an instance of block-decomposition hybrid proximal
extragradient (BD-HPE), and it is proved that the rate of convergence of the primal residual of ADMM for
solving AECCO is

O
(

D2

N

)

,

where D depends on B, Dx∗ and Dy∗ . In [25], the convergence analysis of ADMM and P-ADMM is studied
based on the variational inequality formulation of (1.5), in which similar rate of convergence is achieved under
the assumption that both the primal and dual feasible sets in (1.5) are bounded. In [42], it is shown that if X
is compact, then the rate of convergence of ADMM and L-ADMM for solving the AECCO problem is

G(xN ) + F (wN )− f∗ + ρ‖BwN −KxN − b‖2 ≤ O
(

LGD
2
X + ρD2

y∗,B

N

)

, ∀ρ > 0, (1.15)

where (xN , wN ) is the average of iterates x[N ] of the ADMM algorithm. The result in (1.15) is stronger than
the results in [34, 25], in the sense that both primal and feasibility residuals are included in (1.15), while in
[34, 25] there is no discussion on the feasibility residual. However, the rate of convergence of the feasibility
residual is still not very clear in (1.15), considering that G(xN ) + F (wN )− f∗ can be negative.

1.3. Accelerated methods for AECCO and UCO problems. In a seminal paper [39], Nesterov
introduced a smoothing technique and a fast first-order method that solves a class of composite optimization.
When applied to UCO problems, Nesterov’s method has optimal rate of convergence

O
(

LGD
2
x∗

N2
+
‖K‖Dx∗DY

N

)

1, (1.16)

where Y is the bounded dual space of the UCO problem. Following the breakthrough in [40], much effort has
been devoted to the development of more efficient first-order methods for non-smooth optimization (see, e.g.,
[38, 1, 29, 15, 43, 48, 4, 28]). Although the rate in (1.16) is also O(1/N), what makes it more attractive is
that it allows very large Lipschitz constant LG. In particular, LG can be as large as Ω(N), without affecting
the rate of convergence (up to a constant factor). However, it should be noted that the boundedness of Y
is critical for the convergence analysis of Nesterov’s smoothing scheme. Following [40], there has also been
several studies on the AECCO and UCO problems, and it has been shown that better acceleration results
can be obtained if more assumptions are enforced for the AECCO and UCO problem. We give a list of such
assumptions and results.

1). Excessive gap technique. The excessive gap technique is proposed in [38] for solving the UCO problem
in which G is simple. Comparing to [40], the method in [38] does not require the total number of
iterations N to be fixed in advance. Furthermore, if G(·) is strongly convex, it is shown that the rate
of convergence of the excessive gap technique is O(1/N2).

2). Special instance. For the UCO problem, if K = I and G is simple, an accelerated method with
skipping steps is proposed in Algorithm 7 of [22], which achieves O(1/N2) rate of convergence. The
result is better than (1.16), but with cost of evaluating objective value functions in each iteration.
For AECCO problem with compact feasible sets, it is shown in [33] that if G(·) is a composition of
a strictly convex function and a linear transformation and F (·) is the weighted sum of 1-norm and
some 2-norms, the asymptotic rate of convergence of ADMM method and its variants is R-linear.

3). Strong convexity. In [10] for solving the UCO problem in which G is simple, the authors showed
that P-ADMM is equivalent to their proposed method, and furthermore, if either G(·) or F ∗(·) is
uniformly convex, then the rate of convergence of their method can be accelerated to O(1/N2). It
is worth noting that this rate of convergence is weaker since it uses a different termination criterion.

1It is assumed in [40] that X is compact, hence the rate of convergence is dependent on DX . However, the analysis in [40] is
also applicable for the case when X is unbounded, yielding (1.16).
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In addition, if both G(·) and F ∗(·) are uniformly convex (hence the objective function in (1.4) is
continuously differentiable), the proposed method in [10] converges linearly. When both G(x) and
F (x) are strongly convex in the AECCO problem, an accelerated ADMM method is proposed in [23],
which achieves the O(1/N2) rate of convergence.

It should be noted that all the methods in the above list require more assumptions on the AECCO and
UCO problems (e.g., simplicity of G(·), strong convexity of G(·) or F (·)), in comparison with Nesterov’s
smoothing scheme. More recently, we proposed an accelerated primal-dual (APD) method for solving the
UCO problem [13], which has the same optimal rate of convergence (1.16) as that of Nesterov’s smoothing
scheme in [40]. The advantage of the APD method over Nesterov’s smoothing scheme is that it does not require
boundedness on either X or Y . The basic idea of the APD method is to incorporate a multi-step acceleration
into LP-ADMM, and this has motivated our studies on accelerating the linearized ADMM method for solving
the AECCO and UCO problems.

1.4. Contribution of the paper. The main interest of this paper is to develop an accelerated linearized
ADMM algorithm for solving AECCO and UCO problems, in which G is a general convex and non-simple
function. Our contribution in this paper mainly consists of the following aspects.

Firstly, we propose an accelerated framework for ADMM (AADMM), which consists two novel accelerated
linearized ADMM methods, namely, accelerated L-ADMM (AL-ADMM) and accelerated LP-ADMM (ALP-
ADMM). We prove that AL-ADMM and ALP-ADMM have better rates of convergence than L-ADMM and
LP-ADMM in terms of their dependence on LG. In particular, we prove that both accelerated methods can
achieve rates similar to (1.16), hence both of them can efficiently solve problems with large Lipschitz constant
LG (as large as Ω(N)). We show that L-ADMM and LP-ADMM are special instances of AL-ADMM and
ALP-ADMM respectively, with rates of convergence O(1/N). To improve the performance in practice, we also
propose a simple backtracking technique for searching Lipschitz constants LG and ‖K‖.

Secondly, the proposed framework solve both AECCO and UCO problems with unbounded feasible sets,
as long as a saddle point of problem (1.5) exists. Instead of using the perturbation type gap function in [13],
our convergence analysis is performed directly on both the primal and feasibility residuals. The estimate of
the rate of convergence will depend on the distance from the initial point to the set of optimal solutions.

2. An accelerated ADMM framework. In this section, we propose an accelerated ADMM frame-
work for solving AECCO (1.1) and UCO (1.4). The proposed framework, namely AADMM, is presented in
Algorithm 2.

In AADMM, the binary constant χ in (2.2) is either 0 or 1, the superscript “ag” stands for “aggregate”,
and “md” stands for “middle”. It can be seen that the middle point xmd

t , and the aggregate points wag
t+1, x

ag
t+1

and yagt+1 are weighted sums of all the previous iterates {xi}ti=1, {wi}t+1
i=1, {xi}t+1

i=1 and {yi}t+1
i=1, respectively. If

the weights αt ≡ 1, then xmd
t = xt and the aggregate points are exactly the current iterates wt+1, xt+1 and

yt+1. In this case, if χ = 0, and θt = τt = ρt ≡ ρ, then AADMM becomes L-ADMM, and if in addition G is
simple, then AADMM becomes ADMM. On the other hand, if χ = 1, then AADMM becomes LP-ADMM,
and if in addition G is simple, AADMM becomes P-ADMM.

In this work, we will show that if G is non-simple, by properly specifying the parameter αt, we can
significantly improve the rate of convergence of Algorithm 2 in terms of its dependence on LG, with about the
same iteration cost. We call the acceleration for χ = 0 the accelerated L-ADMM (AL-ADMM), and call that
for χ = 1 the accelerated LP-ADMM (ALP-ADMM).

Next, we define certain appropriate gap functions.

2.1. Gap functions. For any z̃ = (w̃, x̃, ỹ) ∈ Z and z = (w, x, y) ∈ Z, we define

Q(w̃, x̃, ỹ;w, x, y) := [G(x) + F (w) − 〈ỹ, Bw −Kx− b〉]− [G(x̃) + F (w̃)− 〈y,Bw̃ −Kx̃− b〉]. (2.8)

For simplicity, we use the notation Q(z̃; z) := Q(w̃, x̃, ỹ;w, x, y), and under different situations, we may use
notations Q(z̃;w, x, y) or Q(w̃, x̃, ỹ; z) for the same meaning. We can see that Q(z∗, z) ≥ 0 and Q(z, z∗) ≤ 0
for all z ∈ Z, where z∗ is a saddle point of (1.5), as defined in Section 1.1. For compact sets W ⊂ W , X ⊂

5



Algorithm 2 Accelerated ADMM (AADMM) framework

Choose x1 ∈ X and w1 ∈ W such that Bw1 = Kx1+ b. Choose Set xag
1 = x1, w

ag
1 = w1 and yag1 = y1 = 0.

for t = 1, . . . , N − 1 do

xmd
t = (1− αt)x

ag
t + αtxt, (2.1)

xt+1 = argmin
x∈X

〈∇G(xmd
t ), x〉 − χθt〈Bwt −Kxt − b,Kx〉

+
(1 − χ)θt

2
‖Bwt −Kx− b‖2 + 〈yt,Kx〉+ ηt

2
‖x− xt‖2, (2.2)

xag
t+1 = (1− αt)x

ag
t + αtxt+1, (2.3)

wt+1 = argmin
w∈W

F (w)− 〈yt, Bw〉 + τt
2
‖Bw −Kxt+1 − b‖2, (2.4)

wag
t+1 = (1− αt)w

ag
t + αtwt+1, (2.5)

yt+1 = yt − ρt(Bwt+1 −Kxt+1 − b), (2.6)

yagt+1 = (1− αt)y
ag
t + αtyt+1. (2.7)

end for

Output zagN = (wag
N , xag

N ).

X , Y ⊂ Y, the duality gap function

sup
w̃∈W,x̃∈X,ỹ∈Y

Q(w̃, x̃, ỹ;w, x, y) (2.9)

measures the accuracy of an approximate solution (w, x, y) to the saddle point problem

min
x∈X,w∈W

max
y∈Y

G(x) + F (w) − 〈y,Bw −Kx− b〉.

However, our problem of interest (1.1) has a saddle point formulation (1.5), in which the feasible set (W , X,Y)
may be unbounded. Recently, a perturbation-based termination criterion is employed by Monteiro and Svaiter
[35, 36, 34] for solving variational inequalities and saddle point problems. This termination criterion is based
on the enlargement of a maximal monotone operator, which is first introduced in [8]. One advantage of using
this termination criterion is that its definition does not depend on the boundedness of the domain of the
operator. We modify this termination criterion and propose a modified version of the gap function in (2.9).
More specifically, we define

gY (v, z) := sup
ỹ∈Y

Q(w∗, x∗, ỹ; z) + 〈v, ỹ〉 (2.10)

for any closed set Y ⊆ Y, and for any z ∈ Z and v ∈ Y . In addition, we denote

ḡY (z) := gY (0, z) = sup
ỹ∈Y

Q(w∗, x∗, ỹ; z). (2.11)

If Y = Y, we will omit the subscript Y and simply use notations g(v, z) and ḡ(z).

In Propositions 2.1 and 2.2 below, we describe the relationship between the gap functions (2.10)–(2.11)
and the approximate solutions to problems (1.1) and (1.4).

Proposition 2.1. For any Y ⊆ Y, if gY (Bw − Kx − b, z) ≤ ε < ∞ and ‖Bw − Kx − b‖ ≤ δ where
z = (w, x, y) ∈ Z, then (w, x) is an (ε, δ)-solution of (1.1). In particular, when Y = Y, for any v such that
g(v, z) ≤ ε <∞ and ‖v‖ ≤ δ, we always have v = Bw −Kx− b.

6



Proof. By (2.8) and (2.10), for all v ∈ Y and Y ⊆ Y, we have

gY (v, z) = sup
ỹ∈Y

[G(x) + F (w) − 〈ỹ, Bw −Kx− b〉]− [G(x∗) + F (w∗)] + 〈v, ỹ〉

= G(x) + F (w)− f∗ + sup
ỹ∈Y
〈−ỹ, Bw −Kx− b − v〉.

From the above we see that if gY (Bw −Kx − b, z) = G(x) + F (w) − f∗ ≤ ε and ‖Bw −Kx − b‖ ≤ δ, then
(w, z) is an (ε, δ)-solution. In addition, if Y = Y, we can also see that g(v, z) =∞ if v 6= Bw−Kx− b, hence
g(v, z) <∞ implies that v = Bw −Kx− b.

From Proposition 2.1 we can see that when Y = Y and g(v, z) ≤ ε, ‖v‖ is always the feasibility residual
of the approximate solution (w, x). Proposition 2.2 below shows that in some special cases, there exists an
approximate solution to problem (1.1) that has zero feasibility residual.

Proposition 2.2. Assume that B is an one-to-one linear operator such that BW = Y, and F (·) is
Lipschitz continuous, then the set Y := (B∗)−1 domF ∗ is bounded. Moreover, if ḡY (z) ≤ ε, then the pair
(w̃, x) is an ε-solution of (1.1), where w̃ = (B∗)−1(Kx+ b).

Proof. We can see that w̃ is well-defined since BW = Y. Also, using the fact that F (·) is finite valued, by
Corollary 13.3.3 in [45] we know that domF ∗ is bounded, hence Y is bounded. In addition, as Bw̃−Kx−b = 0,

ḡY (z) = sup
ỹ∈Y

[G(x) + F (w) − 〈ỹ, Bw −Kx− b〉]− [G(x∗) + F (w∗)]

= G(x) + F (w)− f∗ + sup
ỹ∈Y
〈−ỹ, Bw −Bw̃〉

= G(x) + F (w̃)− f∗ + sup
ỹ∈Y

[F (w) − F (w̃)− 〈B∗ỹ, w − w̃〉].

If B∗Y ∩ ∂F (w̃) 6= ∅, then from the convexity of F (·) we have

ḡY (z) ≥ G(x) + F (w̃)− f∗,

thus (w̃, x) is an ε-solution. To finish the proof it suffices to show that B∗Y ∩ ∂F (w̃) 6= ∅. Observing that

sup
w̄∈B∗Y

〈w̃, w̄〉 − F ∗(w̄) = sup
w̄∈domF∗

〈w̃, w̄〉 − F ∗(w̄) = sup
w̄∈W
〈w̃, w̄〉 − F ∗(w̄),

and using the fact that Y is closed, we can conclude that there exists B∗ỹ ∈ B∗Y such that B∗ỹ attains the
supremum of the function 〈w̃, w̄〉−F ∗(w̄) with respect to w̄. By Theorem 23.5 in [45], we have B∗ỹ ∈ ∂F (w̃),
and hence ∂F (w̃) ∩B∗Y 6= ∅.

A direct consequence of the above proposition is that for the UCO problem, if F (·) is Lipschitz continuous
and ḡY (z) ≤ ε, then (x,Kx) is an ε-solution.

2.2. Main estimations. In this subsection, we present the main estimates that will be used to prove
the rate of convergence for AADMM.

Lemma 2.3. Let

Γt =

{

Γ1 when αt = 1,

(1− αt)Γt−1 when t > 1.
(2.12)
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For all y ∈ Y, the iterates {zagt }t≥1 := {(wag
t , xag

t , yagt )}t≥1 of Algorithm 2 satisfy

1

Γt
Q(w∗, x∗, y; zagt+1)−

t
∑

i=2

(

1− αi

Γi
− 1

Γi−1

)

Q(w∗, x∗, y; zagi )

≤ Bt(x∗, x[t+1], η[t]) + Bt(y, y[t+1], ρ
−1
[t] ) + Bt(Bw∗, Bw[t+1], θ[t])− χBt(Kx∗,Kx[t+1], θ[t])

−
t
∑

i=1

αi(τi − θi)

2Γi
‖Bwi+1 −Kx∗ − b‖2 +

t
∑

i=1

αi(τi − θi)

2Γi
‖K(xi+1 − x∗)‖2

−
t
∑

i=1

αi(τi − ρi)

2Γiρ2i
‖yi − yi+1‖2 −

t
∑

i=1

αi

2Γi

(

ηi − LGαi − χθi‖K‖2
)

‖xi − xi+1‖2.

(2.13)

where the term Bt(·, ·, ·) is defined as follows: for any point v and any sequence v[t+1] in any vectorial space
V, and any real valued sequence γ[t],

Bt(v, v[t+1], γ[t]) :=

t
∑

i=1

αi

2Γi
γi
(

‖vi − v‖2 − ‖vi+1 − v‖2
)

. (2.14)

Proof. To start with, we prove an important property of the function Q(·, ·) under Algorithm 2. By
convexity of G(·) we have

G(xag
t+1) ≤ G(xmd

t ) + 〈∇G(xmd
t ), xag

t+1 − xmd
t 〉+

LG

2
‖xag

t+1 − xmd
t ‖2. (2.15)

Moreover, by equations (2.1) and (2.3), xag
t+1 − xmd

t+1 = αt(xt+1 − xt). Using this observation, equation (2.15)
and the convexity of G(·), we have

G(xag
t+1) ≤ G(xmd

t ) + 〈∇G(xmd
t ), xag

t+1 − xmd
t 〉+

LGα
2
t

2
‖xt+1 − xt‖2

= G(xmd
t ) + (1− αt)〈∇G(xmd

t ), xag
t − xmd

t 〉+ αt〈∇G(xmd
t ), xt+1 − xmd

t 〉+
LGα

2
t

2
‖xt+1 − xt‖2

= (1− αt)
[

G(xmd
t ) + 〈∇G(xmd

t ), xag
t − xmd

t 〉
]

+ αt

[

G(xmd
t ) + 〈∇G(xmd

t ), xt+1 − xmd
t 〉
]

+
LGα

2
t

2
‖xt+1 − xt‖2

= (1− αt)
[

G(xmd
t ) + 〈∇G(xmd

t ), xag
t − xmd

t 〉
]

+ αt

[

G(xmd
t ) + 〈∇G(xmd

t ), x− xmd
t 〉
]

+ αt〈∇G(xmd
t ), xt+1 − x〉+ LGα

2
t

2
‖xt+1 − xt‖2

≤ (1− αt)G(xag
t ) + αtG(x) + αt〈∇G(xmd

t ), xt+1 − x〉+ LGα
2
t

2
‖xt+1 − xt‖2, ∀x ∈ X.

(2.16)

By (1.10), (1.11), (2.8), (2.16) and the convexity of F (·), we conclude that

Q(z; zagt+1)− (1− αt)Q(z; zagt )

= [G(xag
t+1) + F (wag

t+1)− 〈y,Bwag
t+1 −Kxag

t+1 − b〉]− [G(x) + F (w) − 〈yagt+1, Bw −Kx− b〉]
− (1− αt)[G(xag

t ) + F (wag
t )− 〈y,Bwag

t −Kxag
t − b〉] + (1 − αt)[G(x) + F (w) − 〈yagt , Bw −Kx− b〉]

=
[

G(xag
t+1)− (1− αt)G(xag

t )− αtG(x)
]

+
[

F (wag
t+1)− (1− αt)F (wag

t )− αtF (w)
]

− αt〈y,Bwt+1 −Kxt+1 − b〉+ αt〈yt+1, Bw −Kx− b〉

≤ αt

{

〈∇G(xmd
t ), xt+1 − x〉+ [F (wt+1)− F (w)] +

LGαt

2
‖xt+1 − xt‖2

−〈y,Bwt+1 −Kxt+1 − b〉+ 〈yt+1, Bw −Kx− b〉
}

.

(2.17)
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Next, we examine the optimality conditions in (2.2) and (2.4). for all x ∈ X and w ∈ W, we have

〈∇G(xmd
t ) + ηt(xt+1 − xt), xt+1 − x〉 − 〈θt(Bwt −Kx̃t − b)− yt,K(xt+1 − x)〉 ≤ 0, and

F (wt+1)− F (w) + 〈τt(Bwt+1 −Kxt+1 − b)− yt, B(wt+1 − w)〉 ≤ 0,

where

x̃t := χxt + (1− χ)xt+1. (2.18)

Observing from (2.6) that Bwt+1 −Kxt+1 − b = (yt − yt+1)/ρt and Bwt −Kx̃t − b = (yt − yt+1)/ρt−K(x̃t−
xt+1) +B(wt − wt+1), the optimality conditions become

〈∇G(xmd
t ) + ηt(xt+1 − xt), xt+1 − x〉+ 〈

(

θt
ρt
− 1

)

(yt − yt+1)− yt+1,−K(xt+1 − x)〉

+ θt〈K(x̃t − xt+1),K(xt+1 − x)〉 + θt〈B(wt − wt+1),−K(xt+1 − x)〉 ≤ 0, and

F (wt+1)− F (w) + 〈
(

τt
ρt
− 1

)

(yt − yt+1)− yt+1, B(wt+1 − w)〉 ≤ 0.

Therefore,

〈∇G(xmd
t ), xt+1 − x〉 + F (wt+1)− F (w) − 〈y,Bwt+1 −Kxt+1 − b〉+ 〈yt+1, Bw −Kx− b〉

≤ 〈ηt(xt − xt+1), xt+1 − x〉+ 〈yt+1 − y,Bwt+1 −Kxt+1 − b〉

− 〈
(

θt
ρt
− 1

)

(yt − yt+1),−K(xt+1 − x)〉 − 〈
(

τt
ρt
− 1

)

(yt − yt+1), B(wt+1 − w)〉

+ θt〈K(xt+1 − x̃t),K(xt+1 − x)〉+ θt〈B(wt+1 − wt),−K(xt+1 − x)〉.

(2.19)

Three observations on the right hand side of (2.19) are in place. Firstly, by (2.6) we have

〈ηt(xt − xt+1), xt+1 − x〉+ 〈yt+1 − y,Bwt+1 −Kxt+1 − b〉

= ηt〈xt − xt+1, xt+1 − x〉+ 1

ρt
〈yt+1 − y, yt − yt+1〉

=
ηt
2
(‖xt − x‖2 − ‖xt+1 − x‖2)− ηt

2
(‖xt − xt+1‖2) +

1

2ρt

(

‖yt − y‖2 − ‖yt+1 − y‖2 − ‖yt − yt+1‖2
)

,

(2.20)

and secondly, by (2.6) we can see that

B(wt+1 − w) =
1

ρt
(yt − yt+1) + (Kxt+1 −Kx)− (Bw −Kx− b), (2.21)

and

〈
(

θt
ρt
− 1

)

(yt − yt+1),K(xt+1 − x)〉 − 〈
(

τt
ρt
− 1

)

(yt − yt+1),
1

ρt
(yt − yt+1) + (Kxt+1 −Kx)〉

=
τt − θt
ρt
〈yt − yt+1,−K(xt+1 − x)〉 − τt − ρt

ρ2t
‖yt − yt+1‖2

=
τt − θt

2

[

1

ρ2t
‖yt − yt+1‖2 + ‖K(xt+1 − x)‖2 − ‖ 1

ρt
(yt − yt+1) +K(xt+1 − x)‖2

]

− τt − ρt
ρ2t

‖yt − yt+1‖2

=
τt − θt

2

[

1

ρ2t
‖yt − yt+1‖2 + ‖K(xt+1 − x)‖2 − ‖Bwt+1 −Kx− b‖2

]

− τt − ρt
ρ2t

‖yt − yt+1‖2.
(2.22)
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Thirdly, from (2.18) we have

θt〈K(xt+1 − x̃t),K(xt+1 − x)〉+ θt〈B(wt+1 − wt),−K(xt+1 − x)〉

= − χθt
2

(

‖K(xt − x)‖2 − ‖K(xt+1 − x)‖2 − ‖K(xt − xt+1)‖2
)

+
θt
2

(

‖Bwt −Kx− b‖2 − ‖Bwt+1 −Kx− b‖2 + ‖Bwt+1 −Kxt+1 − b‖2 − ‖Bwt −Kxt+1 − b‖2
)

≤ − χθt
2

(

‖K(xt − x)‖2 − ‖K(xt+1 − x)‖2
)

+
χθt‖K‖2

2
‖xt − xt+1‖2

+
θt
2

(

‖Bwt −Kx− b‖2 − ‖Bwt+1 −Kx− b‖2
)

+
θt
2ρ2t
‖yt − yt+1‖2 −

θt
2
‖Bwt −Kxt+1 − b‖2,

(2.23)

where the last inequality results from the fact that

χ‖K(xt − xt+1)‖ ≤ χ‖K‖‖xt − xt+1‖. (2.24)

Applying (2.19) – (2.23) to (2.17), we have

1

Γt
Q(z; zagt+1)−

1− αt

Γt
Q(z; zagt )

≤ αt

Γt

{

ηt
2
(‖xt − x‖2 − ‖xt+1 − x‖2) + 1

2ρt
(‖yt − y‖2 − ‖yt+1 − y‖2)− τt − ρt

2ρ2t
‖yt − yt+1‖2

+
θt
2
‖Bwt −Kx− b‖2 − τt

2
‖Bwt+1 −Kx− b‖2 − χθt

2
(‖K(xt − x)‖2 − ‖K(xt+1 − x)‖2)

+ 〈
(

τt
ρt
− 1

)

(yt − yt+1), Bw −Kx− b〉+ τt − θt
2
‖K(xt+1 − x)‖2 − θt

2
‖Bwt −Kxt+1 − b‖2

− 1

2

(

ηt − LGαt − χθt‖K‖2
)

‖xt − xt+1‖2
}

.

(2.25)

Letting w = w∗ and x = x∗ in the above, observing from (2.12) that Γt−1 = (1−αt)/Γt, in view of (2.14) and
applying the above inequality inductively, we conclude (2.13).

There are two major consequences of Lemma 2.3. If αt ≡ 1 for all t, then the left hand side of (2.13)
becomes 1

Γ1

∑t
i=2 Q(z; zagi ). On the other hand, if αt ∈ [0, 1) for all t, then in view of (2.12), the left hand side

of (2.13) is Q(z; zagt+1)/Γt. This difference is the main reason why we can accelerate the rate of convergence of
AADMM in terms of LG.

In the next lemma, we provide possible bounds of B(·, ·, ·) in Lemma 2.3.
Lemma 2.4. Suppose that V is any vector space and V ⊂ V is any convex set. For any v ∈ V , v[t+1] ⊂ V

and γ[t] ⊂ R, we have the following:
a). If the sequence {αiγi/Γi} is decreasing, then

Bt(v, v[t+1], γ[t]) ≤
α1γ1
2Γ1
‖v1 − v‖2 − αtγt

2Γt
‖vt+1 − v‖2. (2.26)

b). If the sequence {αiγi/Γi} is increasing, V is bounded and v[t+1] ⊂ V , then

Bt(v, v[t+1], γ[t]) ≤
αtγt
2Γt

D2
V −

αtγt
2Γt
‖vt+1 − v‖2. (2.27)

Proof. By (2.14) we have

Bt(v, v[t+1], γ[t]) =
α1γ1
2Γ1
‖v1 − v‖2 −

t−1
∑

i=1

(

αiγi
2Γi
− αi+1γi+1

2Γi+1

)

‖vi+1 − v‖2 − αtγt
2Γt
‖vt+1 − v‖2.
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If the sequence {αiγi/Γi} is decreasing, then the above equation implies (2.26). If the sequence {αiγi/Γi} is
increasing, V is bounded and v[t+1] ⊂ V , then from the above equation we have

Bt(v, v[t+1], γ[t]) ≤
α1γ1
2Γ1

D2
V −

t−1
∑

i=1

(

αiγi
2Γi
− αi+1γi+1

2Γi+1

)

D2
V −

αtγt
2Γt
‖vt+1 − v‖2

=
αtγt
2Γt

D2
V −

αtγt
2Γt
‖vt+1 − v‖2,

hence (2.27) holds.

2.3. Convergence results on solving UCO problems in bounded domain. We study UCO prob-
lems with bounded feasible sets in this subsection. In particular, throughout this subsection we assume that

Both X and Y := domF ∗ are compact, and B = I, b = 0. (2.28)

It should be noted that the boundedness of Y above is equivalent to the Lipschitz continuity of F (·) (see,
e.g, Corollary 13.3.3 in [45]).

The following Theorem 2.5 generalizes the convergence properties of ADMM algorithms. Although the
convergence analysis of ADMM, L-ADMM and P-ADMM has already been done in several literatures (e.g.,
[34, 25, 10, 42]), Theorem 2.5 gives a unified view of the convergence properties of all ADMM algorithms.

Theorem 2.5. In AADMM, if the parameters of are set to αt ≡ 1, θt ≡ τt ≡ ρt ≡ ρ and ηt ≡
LG + χρ‖K‖2, then

G(xt+1) + F (Kxt+1)− f∗ ≤ LG

2t
D2

X +
χρ

2t
‖K‖2D2

X +
(1− χ)ρ

2t
D2

X,K +
D2

Y

2ρt
, (2.29)

where xt+1 :=
1

t

t+1
∑

i=2

xi. Specially, if ρ is given by

ρ =
DY

χ‖K‖DX + (1− χ)DX,K
, (2.30)

then

G(xt+1) + F (w̃t+1)− f∗ ≤ LGD
2
X

2t
+

χ‖K‖DXDY + (1− χ)DX,KDY

t
. (2.31)

Proof. Since αt ≡ 1, By (2.3), (2.5) and (2.7) we have xag
t = xt, w

ag
t = wt and yagt = yt, and we can see

that Γt ≡ 1 satisfies (2.12) . Applying the parameter settings to RHS of (2.13) in Lemma 2.3, we have

Bt(x∗, x[t+1], η[t]) =
η

2
(‖x1 − x∗‖2 − ‖xt+1 − x∗‖2)

≤ LG

2
D2

x∗ +
χρ

2
‖K‖2D2

x∗ − χρ

2
‖K‖2‖xt+1 − x∗‖2,

Bt(w∗, w[t+1], θ[t]) =
ρ

2
(‖w1 − w∗‖2 − ‖wt+1 − w∗‖2) ≤ ρD2

w∗

2
=

ρD2
x∗,K

2
,

−χBt(Kx∗,Kx[t+1], θ[t]) = −
χρ

2
(‖Kx1 −Kx∗‖2 − ‖Kxt+1 −Kx∗‖2)

≤ − χρ

2
D2

x∗,K +
χρ

2
‖K‖2‖xt+1 − x∗‖2,

Bt(y, y[t+1], ρ
−1
[t] ) ≤

1

2ρ
(‖y1 − y‖2 − ‖yt+1 − y‖2) ≤ D2

Y

2ρ
, ∀y ∈ Y.
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Therefore, by Lemma 2.3 we have

t+1
∑

i=2

Q(w∗, x∗, y; zi) ≤
LG

2
D2

x∗ +
χρ

2
‖K‖2D2

x∗ +
(1− χ)ρ

2
D2

x∗,K +
D2

Y

2ρ

≤ LG

2
D2

X +
χρ

2
‖K‖2D2

X +
(1− χ)ρ

2
D2

X,K +
D2

Y

2ρ
, ∀y ∈ Y.

Furthermore, noticing that for all y ∈ Y , by the convexity of Q(x∗, w∗, y; ·),

Q(w∗, x∗, y; zt+1) ≤ 1

t

t+1
∑

i=2

Q(w∗, x∗, y; zi), where zt+1 :=
1

t

t+1
∑

i=2

zi.

Applying the two inequalities above to (2.11) and Proposition 2.2, we conclude (2.29), and (2.31) follows
immediately.

Although AADMM unifies all ADMM algorithms, what makes it most special is the variable weighting
sequence {αt}t≥1 (rather than αt = 1) that accelerates its convergence rate with respect to its dependence on
LG, as shown in Theorem 2.6 below.

Theorem 2.6. In AADMM, if the parameters are set to

αt =
2

t+ 1
, τt = ρt ≡ ρ, θt =

(t− 1)ρ

t
, and ηt =

2LG + χρt‖K‖2
t

, (2.32)

then

G(xag
t+1) + F (Kxag

t+1)− f∗ ≤ 2LGD
2
X

t(t+ 1)
+

1

t+ 1

[

χρ‖K‖2D2
X + (1− χ)ρD2

X,K +
D2

Y

ρ

]

. (2.33)

In particular, if ρ is given by (2.30), then

G(xag
t+1) + F (Kxag

t+1)− f∗ ≤ 2LGD
2
X

t(t+ 1)
+

2

t+ 1
[χ‖K‖DXDY + (1− χ)DX,KDY ] . (2.34)

Proof. It is clear that

αt =
2

t+ 1
and Γt =

2

t(t+ 1)
satisfies (2.12), and

αt

Γt
= t. (2.35)

By the parameter setting (2.32) and the definition of B(·, ·, ·) in (2.14), it is easy to calculate that

ηt − LGαt − χθt‖K‖2 ≥ 0, τt ≥ θt,

Bt(w∗, w[t+1], θt)−
t
∑

i=1

αi(τi − θi)

2Γi
‖wi+1 − w∗‖2 = −ρt

2
‖wt+1 − w∗‖2 ≤ 0,

− χBt(Kx∗,Kx[t+1], θt) +

t
∑

i=1

αi(τi − θi)

2Γi
‖Kxi+1 −Kx∗‖2

=
χρt

2
‖Kxt+1 −Kx∗‖2 + (1− χ)ρ

2

t
∑

i=1

‖Kxi+1 −Kx∗‖2 ≤ χρt

2
‖K‖2‖xt+1 − x∗‖2 + (1− χ)ρt

2
D2

X,K .

Moreover, by (2.4), (2.6) and Moreau’s decomposition theorem (see, e.g., [37, 14, 18]), we have

yt+1 = yt − ρ(wt+1 −Kxt+1 − b)

= (yt + ρKxt+1 + ρb)− ρ argmin
w∈W

F (w) +
ρ

2
‖w − 1

ρ
(yt −Kxt+1 − b)‖2

= argmin
y∈Y

F ∗(y) +
1

2ρ
‖y − 1

ρ
(yt −Kxt+1 − b)‖2,

(2.36)
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which implies that y[t+1] ⊂ Y . Using this observation together with the fact that αt/(Γtρt) = t/ρ, and applying
(2.27) in Lemma 2.4, we obtain

Bt(y, y[t+1], ρ
−1
[t] ) ≤

t

2ρ
D2

Y , ∀y ∈ Y.

Finally, noting that αtηt/Γt = 2LG + χρt‖K‖2, by (2.27) in Lemma 2.4 we have

Bt(x∗, x[t+1], η[t]) ≤
αtηt
2Γt

D2
X −

αtηt
2Γt
‖xt+1 − x∗‖2 ≤ LGD

2
X +

χρt

2
‖K‖2D2

X −
χρt

2
‖K‖2‖xt+1 − x∗‖2.

Applying all above inequalities to (2.13) in Lemma 2.3, we have

1

Γt
Q(w∗, x∗, y; zagt+1) ≤ LGD

2
X +

χρt

2
‖K‖2D2

X +
(1− χ)ρt

2
D2

X,K +
t

2ρ
D2

Y , ∀y ∈ Y.

Using (2.35) and applying Proposition 2.2, we conclude (2.33), and (2.34) comes from (2.30) and (2.33).

In view of Theorems 2.5 and 2.6, several remarks on the AADMM algorithms are in place. Firstly,
Theorem 2.6 provides an example of choosing stepsizes in AL-ADMM and ALP-ADMM, that leads to better
convergence properties w.r.t the dependence on LG than L-ADMM and LP-ADMM respectively. In particular,
AL-ADMM and ALP-ADMM allow LG to be as large as Ω(N) without affecting the rate of convergence (up
to a constant factor). The comparison of these AADMM algorithms in terms of their rates of convergence is
shown in Table 2.1. Secondly, ALP-ADMM has the same rate of convergence as Nesterov’s smoothing scheme
[40], and achieves optimal rate of convergence (1.16). Moreover, we can see from (2.36) that the APD method
in [13] is equivalent to ALP-ADMM. Nonetheless, AL-ADMM has better constant in the estimation of rate
of convergence than both ALP-ADMM and Nesterov’s smoothing scheme, since DX,K ≤ ‖K‖DX. However,
the computational time for solving problem (2.2) with χ = 0 is usually higher than that for χ = 1, hence
AL-ADMM has higher iteration cost than that of ALP-ADMM. The trade-off between better rate constants
and cheaper iteration costs has to be considered in practice. Thirdly, while Theorem 2.5 describes only the
ergodic convergence of the ADMM algorithms, Theorem 2.6 describes the convergence of aggregate sequences
{zagt+1}t≥1, which are exactly the outputs of the accelerated schemes. Finally, in ADMM methods we have
τt = ρt = θt, while in Theorem 2.6 we only have τt = ρt, although θt → ρt when t → ∞. In fact, if the
total number of iterations is given, it is possible to choose a set of equal stepsize parameters, as described by
Theorem 2.7 below.

Theorem 2.7. In AADMM, if the total number of iterations N is chosen, and the parameters are set to

αt =
2

t+ 1
, θt = τt = ρt =

ρN

t
, and ηt =

2LG + χρN‖K‖2
t

,

where ρ is given by (2.30), then

G(xag
N ) + F (Kxag

N )− f∗ ≤ 2LGD
2
X

N(N − 1)
+

2

N − 1
[χ‖K‖DXDY + (1 − χ)DX,KDY ] . (2.37)
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Proof. Using equation (2.35) as well as the definition of B(·, ·, ·) in (2.14), it is easy to calculate that

ηt − LGαt − χθt‖K‖2 ≥ 0,

Bt(x∗, x[t+1], η[t]) =
2LG + χρN‖K‖2

2
(‖x1 − x∗‖2 − ‖xt+1 − x∗‖2)

≤ 2LG + χρN‖K‖2
2

(D2
x∗ − ‖xt+1 − x∗‖2),

Bt(w∗, w[t+1], θ[t]) =
ρN

2
(‖w1 − w∗‖2 − ‖wt+1 − w∗‖2) ≤ ρND2

w∗

2
=

ρND2
x∗,K

2
, and

−χBt(Kx∗,Kx[t+1], θ[t]) = −
χρN

2
(‖Kx1 −Kx∗‖2 − ‖Kxt+1 −Kx∗‖2)

≤ − χρN

2
D2

x∗,K +
χρN‖K‖2

2
‖xt+1 − x∗‖2.

On the other hand, noting that αt/(Γtρt) = t2/(ρN), by (2.27) in Lemma 2.4 we have

Bt(y, y[t+1], ρ
−1
[t] ) ≤

t2

2ρN
(D2

Y − ‖yt+1 − y∗‖2) ≤ t2D2
Y

2ρN
≤ N

2ρ
D2

Y , ∀y ∈ Y, ∀t ≤ N.

Applying all the above inequalities to (2.13) in Lemma 2.3, we conclude

1

Γt
Q(w∗, x∗, y; zagt+1) ≤ LGD

2
x∗ +

χρN

2
‖K‖2D2

x∗ +
(1 − χ)ρN

2
D2

x∗,K +
N

2ρ
D2

Y ,

≤ LGD
2
X +

χρN

2
‖K‖2D2

X +
(1− χ)ρN

2
D2

X,K +
N

2ρ
D2

Y .

Setting t = N − 1, and applying (2.35), (2.30) and the above inequality to Proposition 2.2, we obtain (2.37).

Table 2.1: Rates of convergence of instances of AADMM for solving UCO with bounded feasible set

No preconditioning (χ = 0) Preconditioned (χ = 1)

ADMM O
(

DX,KDY

t

)

O
(‖K‖DXDY

t

)

Linearized ADMM O
(

LGD
2
X

t
+

DX,KDY

t

)

O
(

LGD
2
X

t
+
‖K‖DXDY

t

)

Accelerated O
(

LGD
2
X

t2
+

DX,KDY

t

)

O
(

LGD
2
X

t2
+
‖K‖DXDY

t

)

2.4. Convergence results on solving AECCO problems. In this section, we study the rate of
convergence of AADMM for solving general AECCO problems without boundedness assumption for either X
or Y , in terms of both primal and feasibility residuals. We start with the convergence analysis of ADMM
algorithms as a special case of AADMM where αt = 1, θt = τt = ρt = ρ.

Theorem 2.8. In AADMM, if αt ≡ 1, θt ≡ τt ≡ ρt ≡ ρ and ηt ≡ η ≥ LG + χρ‖K‖2, then

G(xt+1) + F (wt+1)− f∗ ≤ 1

2t

(

ηD2
x∗ + ρ(1− χ)D2

x∗,K

)

(2.38)
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and

‖Bwt+1 −Kxt+1 − b‖2 ≤ 2

t2

(

2D2
y∗

ρ2
+

ηD2
x∗

ρ
+ (1− χ)D2

x∗,K

)

, (2.39)

where xt+1 :=
1

t

t+1
∑

i=2

xi and wt+1 :=
1

t

t+1
∑

i=2

wi. Specially, if ρ = 1 and η = LG + χ‖K‖2, then

G(xt+1) + F (wt+1)− f∗ ≤ 1

2t
(LGD

2
x∗ + χ‖K‖2D2

x∗ + (1 − χ)D2
x∗,K) (2.40)

and

‖Bwt+1 −Kxt+1 − b‖ ≤ 2
√
LGDx∗

t
+

χ
√
2‖K‖Dx∗

t
+

(1− χ)
√
2Dx∗,K

t
+

2Dy∗

t
. (2.41)

Proof. Similar as the proof of Theorem 2.5, we have

Q(w∗, x∗, y; zt+1)

≤ 1

2t

[

LGD
2
x∗ + χρ‖K‖2D2

x∗ + (1− χ)ρD2
x∗,K +

1

ρ
(‖y1 − y‖2 − ‖yt+1 − y‖2)

]

(2.42)

≤ 1

2t

[

LGD
2
x∗ + χρ‖K‖2D2

x∗ + (1− χ)ρD2
x∗,K

]

− 〈 1
ρt
(y1 − yt+1), y〉, (2.43)

where zt+1 =
∑t+1

t=2 zi. Noting that Q(z∗, zt+1) ≥ 0, by (2.42) we have

‖yt+1 − y∗‖2 ≤ ρLGD
2
x∗ + χρ2‖K‖2D2

x∗ + (1− χ)ρ2D2
x∗,K +D2

y∗ ,

hence if we let vt+1 = (y1 − yt+1)/(ρt), then we have

‖vt+1‖2 ≤
2

ρ2t2
(‖y1 − y∗‖2 + ‖yt+1 − y∗‖2)

≤ 2

t2
(
LGD

2
x∗

ρ
+ χ‖K‖2D2

x∗ + (1− χ)D2
x∗,K +

2

ρ2
D2

y∗).

Furthermore, by (2.43) we have

g(vt+1, z
t+1) ≤ 1

2t

[

LGD
2
x∗ + χρ‖K‖2D2

x∗ + (1− χ)ρD2
x∗,K

]

.

Applying the two inequalities above to Proposition 2.1 we obtain (2.38) and (2.39). The results in (2.45) and
(2.46) then follows immediately.

From Theorem 2.8 we see that the for ADMM algorithms, the rate of convergence of both primal and
feasibility residuals are of order O(1/t). The detailed rate of convergence of each algorithm is listed in Tables
2.2 and 2.3. We observe that a larger value of ρ will increase the right side of (2.38), but decrease that
of (2.39). Hence, an “optimal” selection of ρ will be determined by considering both primal and feasibility
residuals together. For the sake of simplicity, we set ρ = 1.

In Theorem 2.9 below, we show that there exists a weighting sequence {αt}t≥1 that improves the rate of
convergence of Algorithm 2 in terms of its dependence on LG.

Theorem 2.9. In AADMM, if the total number of iterations is set to N , and the parameters are set to

αt =
2

t+ 1
, θt = τt =

N

t
, ρt =

t

N
, and ηt =

2LG + χN‖K‖2
t

, (2.44)
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then

G(xag
N ) + F (wag

N )− f∗ ≤ 2LGD
2
x∗

N(N − 1)
+

1

2(N − 1)

[

χ‖K‖2D2
x∗ + (1− χ)D2

x∗,K

]

, (2.45)

and

‖Bwag
N −Kxag

N − b‖ ≤ 4
√
LGDx∗

(N − 1)
√
N

+
2
√
2χ‖K‖Dx∗

N − 1
+

2
√
2(1− χ)Dx∗,K

N − 1
+

4Dy∗

N − 1
. (2.46)

Proof. Using equations (2.44), (2.35) and (2.14), we can calculate that

ηt − LGαt − χθt‖K‖2 ≥ 0, τt ≥ ρt for all t ≤ N,

Bt(x∗, x[t+1], η[t]) =
2LG + χN‖K‖2

2
(D2

x∗ − ‖xt+1 − x∗‖2),

Bt(y, y[t+1], ρ
−1
[t] ) =

N

2
(‖y1 − y‖2 − ‖yt+1 − y‖2), ∀y ∈ Y,

Bt(Bw∗, Bw[t+1], θ[t]) =
N

2
(‖Bw1 −Bw∗‖2 − ‖Bt+1 −Bw∗‖2) ≤ N

2
D2

w∗,B =
N

2
D2

x∗,K ,

−χBt(Kx∗,Kx[t+1], θ[t]) = −
χN

2
(‖Kx1 −Kx∗‖2 − ‖Kxt+1 −Kx∗‖2),

≤ − χN

2
(Dx∗,K − ‖K‖2‖xt+1 − x∗‖2).

Applying all the above calculations to (2.13) in Lemma 2.3, we have

1

Γt
Q(w∗, x∗, y; zagt+1)

≤ LGD
2
x∗ +

χN

2
‖K‖2D2

x∗ +
(1− χ)N

2
D2

x∗,K +
N

2
(‖y1 − y‖2 − ‖yt+1 − y‖2), ∀y ∈ Y.

Two consequences to the above estimation can be derived. Firstly, since Q(z∗; zagt+1) ≥ 0, we have

‖yt+1 − y∗‖2 ≤ 2LG

N
D2

x∗ + χ‖K‖2D2
x∗ + (1− χ)D2

x∗,K +D2
y∗ ,

and

‖y1 − yt+1‖2 ≤ 2(‖y1 − y∗‖2 + ‖yt+1 − y∗‖2) ≤ 4LG

N
D2

x∗ + 2χ‖K‖2D2
x∗ + 2(1− χ)D2

x∗,K + 4D2
y∗ .

Secondly, since ‖y1 − y‖2 − ‖yt+1 − y‖2 = ‖y1‖2 − ‖yt+1‖2 − 2〈y1 − yt+1, y〉 ≤ −2〈y1 − yt+1, y〉,

1

Γt
Q(w∗, x∗, y; zagt+1) +N〈y1 − yt+1, y〉 ≤ LGD

2
x∗ +

χN

2
‖K‖2D2

x∗ +
(1− χ)N

2
D2

x∗,K , ∀y ∈ Y.

Letting t = N − 1 and vN := 2(y1 − yt+1)/(N − 1), and applying (2.35) and the two above inequalities to
Proposition 2.1, we obtain (2.45) and (2.46).

Comparing (2.40) and (2.41) with (2.45) and (2.46) respectively, AL-ADMM and ALP-ADMM are better
than both L-ADMM and LP-ADMM respectively, in terms of their rates of convergence of both primal and
feasibility residuals. The rates of convergence of AADMM algorithms are outlined in Tables 2.2 and 2.3.

16



Table 2.2: Rates of convergence of the primal residuals of AADMM instances for solving general AECCO

No preconditioning (χ = 0) Preconditioned (χ = 1)

ADMM O
(

D2
x∗,K

N

)

O
(‖K‖D2

x∗

N

)

Linearized ADMM O
(

LGD
2
x∗ +D2

x∗,K

N

)

O
(

LGD
2
x∗ + ‖K‖D2

x∗

N

)

Accelerated O
(

LGD
2
x∗

N2
+

D2
x∗,K

N

)

O
(

LGD
2
x∗

N2
+
‖K‖D2

x∗

N

)

Table 2.3: Rates of convergence of the feasibility residuals of AADMM instances for solving general AECCO

No preconditioning (χ = 0) Preconditioned (χ = 1)

ADMM O
(

Dx∗,K +Dy∗

N

)

O
(‖K‖Dx∗ +Dy∗

N

)

Linearized ADMM O
(√

LGDx∗ +Dx∗,K +Dy∗

N

)

O
(√

LGDx∗ + ‖K‖Dx∗ +Dy∗

N

)

Accelerated O
(√

LGDx∗

N3/2
+

Dx∗,K +Dy∗

N

)

O
(√

LGDx∗

N3/2
+
‖K‖Dx∗ +Dy∗

N

)

2.5. A simple backtracking scheme. We have discussed the rate of convergence of Algorithm 2, with
the assumption that both LG and ‖K‖ are given. In practice, we may need backtracking techniques to
estimate both constants. In this subsection, we propose a simple backtracking technique for AL-ADMM and
ALP-ADMM.

From the proof of Lemma 2.3, we can see that if LG and ‖K‖ in (2.15) and (2.24) are replaced by Lt and
Mt respectively, i.e.,

G(xag
t+1) ≤ G(xmd

t ) + 〈∇G(xmd
t ), xag

t+1 − xmd
t 〉+

Lt

2
‖xag

t+1 − xmd
t ‖2 and (2.47)

χ‖K(xt − xt+1)‖ ≤ χMt‖xt − xt+1‖, (2.48)

then Lemma 2.3 still holds. On the other hand, to prove Theorems 2.5 through 2.9, in addition to Lemma
2.3, we require monotonicity of the sequences α[t]η[t]/Γ[t], α[t]τ[t]/Γ[t], α[t]θ[t]/Γt and αt/(Γtρt), and

ηt − Ltαt − χθtM
2
t ≥ 0, (2.49)

The monotonicity of these sequences is also used in Lemma 2.4, which helps to prove the boundedness of
distances B(·, ·, ·) at the RHS of (2.13) in Lemma 2.3. From these observations, we can simply use the
following choice of parameters:

θt = τt =
νtαt

Γt
, ρt =

αt

νtΓt
, ηt = Ltαt + χθtM

2
t ,

where we assume that ν[t], M[t] are both monotone. It should be noted that the monotonicity of α[t]η[t]/Γ[t]

relies on {Ltα
2
t /Γt}t≥1, which is trivial if we simply set Ltα

2
t = Γt. In addition, in view of the RHS of (2.13),
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we require τt ≥ ρt, i.e., νt ≥ αt/Γt. We summarize all the discussions above to a simple backtracking procedure
below.

Procedure 1 Backtracking procedure for AL-ADMM and ALP-ADMM at the t-th iteration

0: procedure Backtracking(Lt−1, Mt−1, Γt−1, νt−1, xt, x
ag
t , Lmin)

1: Lt ← max{Lmin, Lt−1/2}, Mt = Mt−1 and vt = vt−1. ⊲ Initialization
2: Estimate αt ∈ [0, 1] by solving the quadratic equation

Ltα
2
t = Γt−1(1− αt), (2.50)

and set Γt ← Γt−1(1− αt), νt = max{νt−1, αt/Γt}.
3: Choose stepsize parameters as

θt = τt =
ρνtΓt

αt
, ρt =

ραt

Γtνt
, and ηt =

Γt

αt
+ χθtM

2
t , (2.51)

and calculate iterates (2.1) – (2.3).
4: if G(xag

t+1)−G(xmd
t )− 〈∇G(xmd

t ), xag
t+1 − xmd

t 〉 > Lt

2 ‖x
ag
t+1 − xmd

t ‖2 then

5: Set Lt ← 2Lt. Go to 2. ⊲ Backtracking LG

6: else if χ‖Kxt+1 −Kxt‖ > χMt‖xt+1 − xt‖ then
7: Set Mt ← 2Mt. Go to 2. ⊲ Backtracking ‖K‖
8: end if

9: return Lt, Mt, Γt, νt, xt+1, x
ag
t+1, τt, ρt, αt

10: end procedure

A few remarks are in place for the above backtracking procedure. Firstly, steps 2 through 8 are the
backtracking steps, which terminates only when the conditions in steps 4 and 6 are both satisfied. Clearly,
in each call to the backtracking procedure, steps 4 and 6 will only be performed finitely many times, and
the returned values Lt and Mt satisfies Lmin ≤ Lt ≤ 2LG and Mt ≤ 2‖K‖, respectively. Secondly, while
Mt ≥ Mt−1 and νt ≥ νt−1, the value of Lt in step 9 is not necessarily greater than Lt−1. Finally, the
multiplier for increasing or decreasing Lt and Mt is 2, which can be replaced by any number that is greater
than 1.

The scheme of AADMM with backtracking is presented in Algorithm 3.

Algorithm 3 AADMM with backtracking

Choose x1 ∈ X and w1 ∈ W such that Bw1 = Kx1 + b, L0 ≥ Lmin > 0 and M0, ν0, ρ > 0. Set xag
1 ← x1,

wag
1 ← w1, y

ag
1 ← y1 = 0, Γ0 ← L0, t← 1.

for t = 1, · · · , N − 1 do

(Lt, Mt, Γt, νt, xt+1, x
ag
t+1, τt, ρt, αt)←BACKTRACKING(Lt−1, Mt−1, Γt−1, νt−1, xt, x

ag
t , Lmin)

Calculate iterates (2.4) – (2.7).
end for

We start by considering UCO problems with bounded feasible sets X and Y . Theorem 2.11 below sum-
marizes the convergence properties of Algorithm 3 for solving bounded UCO problems.

Theorem 2.10. If we set ν0 = −∞ and apply Algorithm 3 to the UCO problem (1.4) under assumption
(2.28), then

G(xag
t+1) + F (Kxag

t+1)− f∗

≤ 4LGD
2
X

t2
+

4LG

Lmin(t− 1)

[

6χρmax{4M2
0 , ‖K‖2}D2

X + (1 − χ)ρD2
X,K +

D2
Y

ρ

]

.
(2.52)
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In particular, if ρ = DY√
6χmax{2M0,‖K‖}DX+(1+χ)DX,K

, then

G(xag
t+1) + F (Kxag

t+1)− f∗

≤ 4LGD
2
X

t2
+

4LG

Lmin(t− 1)

[√
6χmax{2M0, ‖K‖}DXDY + (1− χ)DX,KDY

]

.
(2.53)

Proof. As discussed after Procedure 1, we have

Lmin ≤ Lt ≤ 2LG and 0 ≤Mt ≤ 2‖K‖. (2.54)

We can now estimate the bounds of αt and Γt. By (2.12) we have 1/Γt = 1/Γt−1 + αt/Γt, hence

√

1

Γt
−
√

1

Γt−1
=

1/Γt − 1/Γt−1
√

1/Γt +
√

1/Γt−1

=
αt/Γt

√

1/Γt +
√

1/Γt−1

.

Observing from equations (2.12), (2.50) and (2.54) that

1/(2LG) ≤ α2
t /Γt ≤ 1/Lmin, (2.55)

we have
√

1

Γt
−
√

1

Γt−1
≥ αt/Γt

2
√

1/Γt

=
αt

2
√
Γt

≥ 1

2
√
2LG

, and

√

1

Γt
−
√

1

Γt−1
≤

√

1/(LminΓt)
√

1/Γt +
√

1/Γt−1

≤ 1√
Lmin

.

Therefore, by induction we conclude that

t

2
√
2LG

≤
√

1

Γt
≤ t√

Lmin

+
1√
L0

≤ t+ 1√
Lmin

, or
Lmin

(t+ 1)2
≤ Γt ≤

8LG

t2
. (2.56)

Now let us examine the RHS of (2.13) in Lemma 2.3. Without loss of generality, we assume that 2M0 ≤ ‖K‖.
Indeed, if 2M0 > ‖K‖, then Mt ≡ 2M0 for all t ≥ 1. Since ν[t] and M[t] are monotonically increasing, by
(2.51) and (2.27) in Lemma 2.4, we have

Bt(x∗, x[t+1], η[t]) ≤
1 + χνtρM

2
t

2
(D2

X − ‖xt+1 − x∗‖2) ≤ 1 + χνtρM
2
t

2
D2

X

≤ 1

2
D2

X + 2χνtρ‖K‖2D2
X ,

Bt(y, y[t+1], ρ
−1
[t] ) =

νt
2ρ

(‖y1 − y‖2 − ‖yt+1 − y‖2) ≤ νt
2ρ

D2
Y , ∀y ∈ Y,

Bt(w∗, w[t+1], θ[t]) =
νtρ

2
(‖w1 − w∗‖2 − ‖wt+1 − w∗‖2) ≤ νtρ

2
D2

X,K .

On the other hand, by (2.26) in Lemma 2.4 we have

−χBt(Kx∗,Kx[t+1], θ[t]) ≤ −
χν1ρ

2
(‖Kx1 −Kx∗‖2 − ‖Kxt+1 −Kx∗‖2) ≤ χν1ρ

2
‖K‖2‖xt+1 − x∗‖2

≤ χνtρ

2
‖K‖2D2

X .

Applying the above calculations on B(·, ·, ·) to Lemma 2.3, we have

1

Γt
Q(w∗, x∗, y; zagt+1) ≤

D2
X

2
+

νtρ

2
D2

X,K +
5χνtρ

2
‖K‖2D2

X +
νt
2ρ

D2
Y

≤ D2
X

2
+ 3χνtρ‖K‖2D2

X +
(1− χ)νtρ

2
D2

X,K +
νt
2ρ

D2
Y .
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Observe that by (2.55) and (2.56), αt/Γt ≤ (t+ 1)/Lmin, and that

νt ≤ max
i=1,...t

αi/Γi ≤ (t+ 1)/Lmin. (2.57)

Using the previous two inequalities and (2.56), we have

ḡY (z
ag
t+1) ≤

4LGD
2
X

t2
+

24χρLG(t+ 1)

t2Lmin
‖K‖2D2

X +
4(1− χ)ρLG(t+ 1)

t2Lmin
D2

X,K +
4LG(t+ 1)

t2Lminρ
D2

Y

≤ 4LGD
2
X

t2
+

24χρLG

Lmin(t− 1)
‖K‖2D2

X +
4LG

Lminρ(t− 1)
D2

Y .

The above inequality, in view of Proposition 2.2, then implies (2.52) and (2.53).

For AECCO problems when both X and Y are bounded, we can also apply Algorithm 3 with χ = 0,
as long as the maximum number of iterations N is given. Theorem 2.11 below describes the convergence
properties of AL-ADMM with backtracking for solving general AECCO problems.

Theorem 2.11. If we choose χ = 0, ρ = 1, and ν0 = N/Lmin in Algorithm 3, then

G(xag
N ) + F (wag

N )− f∗ ≤ 4LGD
2
x∗

(N − 1)2
+

4LGD
2
x∗,K

Lmin(N − 1)
, and (2.58)

‖Bwag
N −Kxag

N − b‖ ≤ 16
√
LGDx∗√

Lmin(N − 1)3/2
+

16
√
2
√
LGDx∗,K√

Lmin(N − 1)
+

32LGDy∗

Lmin(N − 1)
. (2.59)

Proof. In view of step 2 in Procedure 1, equation (2.57) and the choice of ν0, we can see that νt ≡ N/Lmin.
By (2.12), (2.50), (2.14) and (2.51), we have

Bt(x∗, x[t+1], η[t]) =
1

2
(D2

x∗ − ‖xt+1 − x∗‖2) ≤ 1

2
D2

x∗ ,

Bt(y, y[t+1], ρ
−1
[t] ) =

N

2Lmin
(‖y1 − y‖2 − ‖yt+1 − y‖2), ∀y ∈ Y,

Bt(Bw∗, Bw[t+1], θ[t]) =
N

2Lmin
(‖Bw1 −Bw∗‖2 − ‖Bt+1 −Bw∗‖2) ≤ N

2Lmin
D2

x∗,K .

Using the fact that τt ≥ ρt and χ = 0, and applying the above calculations to Lemma 2.3, we have

1

Γt
Q(w∗, x∗, y; zagt+1) ≤

1

2
D2

x∗ +
N

2Lmin
D2

x∗,K +
N

2Lmin
(‖y1 − y‖2 − ‖yt+1 − y‖2), ∀y ∈ Y.

Similarly to the proof of Theorem 2.9, we have

‖yt+1 − y∗‖2 ≤ Lmin

N
D2

x∗ +D2
x∗,K +D2

y∗ , ‖y1 − yt+1‖2 ≤
2Lmin

N
D2

x∗ + 2D2
x∗,K + 4D2

y∗ , and

1

Γt
Q(w∗, x∗, y; zagt+1) +

N

Lmin
〈y1 − yt+1, y〉 ≤

1

2
D2

x∗ +
N

2Lmin
D2

x∗,K , ∀y ∈ Y.

Setting vt+1 = ΓtN(y1 − yt+1)/Lmin, t = N − 1 and applying (2.56), we have

Q(w∗, x∗, y; zagN ) + 〈vN , y〉 ≤ 4LGD
2
x∗

(N − 1)2
+

4LGD
2
x∗,K

Lmin(N − 1)
, (2.60)

‖vN‖ ≤
8
√
2
√
LGNDx∗√

Lmin(N − 1)2
+

8
√
2N
√
LGDx∗,K√

Lmin(N − 1)2
+

16NLGDy∗

Lmin(N − 1)2

≤ 16
√
LGDx∗√

Lmin(N − 1)3/2
+

16
√
2
√
LGDx∗,K√

Lmin(N − 1)
+

32LGDy∗

Lmin(N − 1)
.

(2.61)

These previous two relations together with Proposition 2.1 then imply (2.58) and (2.59).
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3. Numerical examples. In this section, we will present some preliminary numerical results of the
proposed methods. The numerical experiments are carried out on overlapped LASSO, compressive sensing,
and an application on partially parallel image reconstruction. All algorithms are implemented in MATLAB
2013b on a Dell Precision T1700 computer with 3.4 GHz Intel i7 processor.

3.1. Group LASSO with overlap. The goal of this section is to examine the effectiveness of the
proposed methods for solving UCO problems with unbounded X . In this experiment, our problem of interest
is the group LASSO model given by [27]

min
x∈Rn

m
∑

i=1

(〈ai, x〉 − fi)
2 + λ

∑

g∈G
‖xg‖, (3.1)

where {(ai, fi)}mi=1 ⊆ Rn ×R is a group of datasets, x is the sparse feature to be extracted, and the structure
of x is represented by group G. In particular, G ⊆ 2{1,...,n}, and for any g ⊆ {1, . . . , n}, xg is a vector that is
constructed by components of x whose indices are in g, i.e., xg := (xi)i∈g. The first term in (3.1) describes the
fidelity of data observation, and the second term is the regularization term to enforce certain group sparsity. In
particular, we assume that x is sparse in the group-wise fashion, i.e., for any g ∈ G, xg is sparse. Problem (3.1)
can be formulated as a UCO problem (1.4) by defining the linear operator K as Kx = λ(xT

g1 , x
T
g2 , . . . , x

T
gl
)T ,

where gi ∈ G and G = {gi}li=1. Specially, if each gi consists k elements, then (3.1) becomes

min
x∈Rn

1

2
‖Ax− f‖2 + λ‖Kx‖k,1, (3.2)

where A = (a1, . . . , am)T , f = (f1, . . . , fm)T , and ‖·‖k,1 is defined by ‖u‖k,1 :=
∑n

i=1 ‖(u(ki−k+1), . . . , u(ki))T ‖
for all u ∈ Rkn, where ‖ · ‖ is the Euclidean norm in Rk. Note that F (·) := ‖ · ‖k,1 is simple, so the solution
of problem (1.2) can be obtained directly by examining the optimality condition, which is also known as
soft-thresholding.

In this experiment, we generate the datasets {(ai, fi)}mi=1 by fi = 〈ai, xtrue〉 + ε, where ai ∼ N(0, In),
ε ∼ N(0, 0.01), and the true feature xtrue is the n-vector form of a 64×64 two-dimensional signal whose support
and intensities are shown in Figure 1. Within its support, the intensities of xtrue are generated independently
from standard normal distribution. We set n = 4096, m = 2048 and choose G to be all the 2 × 2 blocks in
the 64× 64 domain (so that k = 4), and apply L-ADMM, LP-ADMM, AL-ADMM and ALP-ADMM to solve
(3.1) in which λ = 1. The parameters for AL-ADMM and ALP-ADMM are chosen as in Theorem 2.9, and N
is set to 300. To have a fair comparison, we use the same Lipschitz constants LG = λmax(A

TA) ≈ 1.6× 104,
‖K‖ = 2 and ρ = 0.5 for all algorithms without performing a backtracking. Both the primal objective function
value f(x̃) and the feature extraction relative error r(x̃) at approximate solution x̃ ∈ R versus CPU time are
reported in Figure 1, where

r(x̃) :=
‖x̃− xtrue‖
‖xtrue‖

. (3.3)

From Figure 1 we can see that the performance of AL-ADMM and ALP-ADMM are almost the same,
and both of them outperforms L-ADMM and LP-ADMM. This is consistent with our theoretical observations
that AL-ADMM and ALP-ADMM have better rate of convergence (2.45) than ADMM (2.40).

3.2. Compressive sensing. In this subsection, we present the experimental results on the comparison
of ADMM and AADMM for solving the following image reconstruction problem:

min
x∈X

1

2
‖Ax− f‖2 + λ‖Dx‖2,1, (3.4)

where x is the n-vector form of a two-dimensional image to be reconstructed, ‖Dx‖2,1 is the discrete form
of the TV semi-norm, A is a given acquisition matrix (depending on the physics of the data acquisition), f
represents the observed data, and X := {x ∈ Rn : l∗ ≤ x(i) ≤ u∗, ∀i = 1, . . . , n}. Problem (3.4) is a special

21



case of UCO (1.4) with W = R2n, G(x) = ‖Ax − b‖2/2, F (w) = ‖w‖2,1 and K = λD. We assume that the
finite difference operator D satisfies the periodic boundary condition, so that the problem in (2.2) with χ = 0
can be solved easily by utilizing the Fourier transform (see [49]).

In our experiment, we consider two instances where the acquisition matrix A ∈ Rm×n is generated inde-
pendently from a normal distribution N(0, 1/

√
m) and a Bernoulli distribution that takes equal probability for

the values 1/
√
m and −1/√m respectively. Both types of acquisition matrices are widely used in compressive

sensing (see, e.g., [2]). For a given A, the measurements b are generated by b = Axtrue + ε, where xtrue is
a 64 by 64 Shepp-Logan phantom [47] with intensities in [0, 1] (so n = 4096), and ε ≡ N(0, 0.001In). We
choose m = 1229 so that the compression ratio is about 30%, and set λ = 10−3 in (1.6). Considering the
range of intensities of xtrue, we apply ALP-ADMM with parameters in Theorem 2.6 and LP-ADMM to solve
(3.4) with bounded feasible set X := {x ∈ Rn : 0 ≤ x(i) ≤ 1, ∀i = 1, . . . , n}. It should be pointed that since
Y := domF ∗ = {y ∈ R2n : ‖y‖2,∞ := maxi=1,...,n ‖(y2i−1, y2i)T ‖2 ≤ 1}, we have DX = DY = n, which
suggests that ρ = 1/‖K‖ may be a good choice for ρ. We also apply L-ADMM and AL-ADMM to solve (3.4),
with χ = 1 and X = Rn. In this case we use the parameters in Theorem 2.9 with N = 300 for AL-ADMM. To
have a fair comparison, we use the same constants LG = λmax(A

TA) and ‖K‖ = λ
√
8 (see [9]) and ρ = 1/‖K‖

for all algorithms without performing backtracking. We report both the primal objective function value and
the reconstruction relative error (3.3) versus CPU time in Figure 3.

It is evident from Figure 2 that AL-ADMM and ALP-ADMM outperforms L-ADMM and LP-ADMM in
solving (3.1). This is consistent with our theoretical results in Corollaries 2.5, 2.6, 2.8 and 2.9. Moreover, it
is interesting to observe that ALP-ADMM with box constrained X outperforms AL-ADMM with X = Rn.
This suggests that the knowledge of the ground truth is helpful in solving image reconstruction problems.

3.3. Partially parallel imaging. In this section, we compare the performance of AADMM with back-
tracking and Bregman operator splitting with variable stepsize (BOSVS) [12], which is a linearized ADMM
method with backtracking, in reconstruction of magnetic resonance images from partially parallel imaging
(PPI). In magnetic resonance PPI, a set of multi-channel k-space data is acquired simultaneously from ra-
diofrequency (RF) coil arrays. The imaging is accelerated by sampling a reduced number of k-space samples.
The image reconstruction problem can be modeled as

min
x∈X

1

2

nch
∑

j=1

‖MFSjx− fj‖2 + λ‖Dx‖2,1, (3.5)

where x is the vector form of a two-dimensional image to be reconstructed. In (3.5), nch is the number of MR
sensors, F ∈ Cn×n is a 2D discrete Fourier transform matrix, Sj ∈ Cn×n is the sensitivity encoding map of
the j-th sensor, and M ∈ Rn×n describes the scanning pattern of MR sensors, and X ⊆ Cn. In particular,
Sj ’s and M are both diagonal matrices, and their diagonal vectors diagSj ∈ R

n and diagM ∈ R
n are n-vector

form of images that have the same dimension as the reconstructed image. In practice, diagSj describes the
sensitivity of the j-th sensor at each pixel, and diagM is a mask that takes value ones at the scanned pixels
and zeros elsewhere. Figure 4 shows the two-dimensional image representations of {diagSj}nch

j=1, xtrue and
diagM . The PPI reconstruction problems are described in more details in [11]. It should be noted that (3.5)
is a special case of (3.4), and that the percentage of nonzero elements in diagM describes the compression
ratio of PPI scan. In view of the fact that ‖F‖ = √n, the Lipschitz constant LG of (3.5) can be estimated by

LG = ‖
nch
∑

j=1

SjF
TM2FSj‖ ≤ n‖

nch
∑

j=1

Sj‖2 = n‖
nch
∑

j=1

diagSj‖2∞. (3.6)

In this experiment, nch = 8, and the measurements {fj}nch

j=1 are generated by

fj = M(FSjxtrue + εrej /
√
2 + εimj /

√
−2), j = 1, . . . , nch

where the noises εrej , εimj are independently generated from distribution N (0, 10−4√nIn). We generate four
instances of experiments where the ground truth xtrue are the human brain image (see Figure 4). The
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Table 3.1: Data acquisition information in partially parallel image reconstruction.

Instance Dimension of xtrue Sampling trajectory Acquisition rate LG

1a n = 256× 256 Cartesian mask 18% 3.34× 105

1b n = 256× 256 Pseudo random mask 24% 3.34× 105

2a n = 512× 512 Cartesian mask 18% 1.60× 106

2b n = 512× 512 Pseudo random mask 24% 1.60× 106

information of the instances is listed in Table 3.1. In particular, instances 1a and 1b have Cartesian and
pseudo-random k-space sampling trajectories respectively but share the same sensitivity map and ground
truth, and so are instances 2a and 2b.

We first consider X = C
n, and use AL-ADMM with backtracking to solve (3.5). We use the parameters

in Theorem 2.11 with N = 400 in all PPI experiments. We also apply the BOSVS method in [12]2 to solve
(3.5) with X = Cn, which is a backtracking linesearch technique for L-ADMM with Barzilai-Borwein stepsize
[3]. Furthermore, noticing that xtrue is in bounded feasible set X := {x ∈ Cn : |x(i)| ≤ 1, ∀i = 1, . . . , n}, we
also apply ALP-ADMM with backtracking to solve (3.5) with aforementioned bounded feasible set X . We set
the parameters to λ = 10−10n in (3.5), and choose L0 = ‖F‖2 = n, Lmin = LG/10, M0 = ‖K‖/10 = λ

√
8/10

for Algorithm 3 where LG is listed in Table 3.1.

The performance of AL-ADMM, ALP-ADMM and BOSVS is shown in Figures 5 and 6, in terms of both
the primal objective function value and relative error (3.3). It is evident that AL-ADMM and ALP-ADMM
outperform BOSVS in terms of the decrement of both primal objective value and relative error to ground
truth, especially in the case of using Cartesian sampling trajectory. Since the Cartesian sampling trajectory
in our experiments collects less low-frequency data (the center part in the k-space) and has no randomness
in sampling (see Figure 4), it makes harder to get a good reconstruction comparing with that of the pseudo-
random sampling trajectory. Our experimental results indicates that in this case the AADMM is much more
efficient than BOSVS in reconstruction. It is evident that AL-ADMM and ALP-ADMM outperform BOSVS
in terms of the decrement of both primal objective value and relative error to ground truth. This observation
is consistent with our theoretical result in Theorems 2.10 and 2.11.

4. Conclusion. We present in this paper the AADMM framework by incorporating a multi-step accel-
eration scheme into linearized ADMM. AADMM has better rates of convergence than linearized ADMM on
solving a class of convex composite optimization with linear constraints, in terms of the Lipschitz constant of
the smooth component. Moreover, AADMM can handle both bounded and unbounded feasible sets, as long
as a saddle point exists. For the unbounded case, the estimation for the rate of convergence depends on the
distance from initial point to the set of saddle points. We also propose a backtracking scheme to improve the
practical performance of AADMM. Our preliminary numerical results show that AADMM is promising for
solving large-scale convex composition optimization with linear constraints.
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Fig. 1: True feature xtrue in the experiment of group LASSO with overlap. Left: the support of xtrue. Right: the intensities
of xtrue.
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Fig. 2: Comparisons of AL-ADMM, ALP-ADMM, L-ADMM and LP-ADMM in group LASSO with overlap. Left: the objective
function values f(xag

t ) from AL-ADMM and ALP-ADMM, and f(xt) from L-ADMM and LP-ADMM vs. CPU time. The straight
line at the bottom is f(xtrue). Right: the relative errors r(xag

t ) from AL-ADMM and ALP-ADMM and r(xt) from L-ADMM
and LP-ADMM vs. CPU time.
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Fig. 3: Comparisons of AL-ADMM, ALP-ADMM, L-ADMM and LP-ADMM in image reconstruction. The top and bottom
rows, respectively, show the performance of these algorithms on the “Gaussian” and “Bernoulli” instances. Left: the objective
function values f(xag

t ) from AL-ADMM and ALP-ADMM, and f(xt) from L-ADMM and LP-ADMM vs. CPU time. The straight
line at the bottom is f(xtrue). Right: the relative errors r(xag

t ) from AL-ADMM and ALP-ADMM, and r(xt) in L-ADMM and
LP-ADMM vs. CPU time.
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(a) (b) (c)

(d) (e) (f)

Fig. 4: Sensitivity map {diagSj}
8

j=1
(left), ground truth xtrue (middle) and mask diagM (right) in partially parallel image

reconstruction. (a): The sensitivity maps in instances 1a and 1b. (b): The ground truth in instances 1a and 1b. (c): The k-space
sampling trajectory in instances 1a (top) and 1b (bottom). (d): The sensitivity maps in instances 2a and 2b. (e): The ground
truth in instances 2a and 2b. (f): The k-space sampling trajectory in instances 2a (top) and 2b (bottom).
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Fig. 5: Comparisons of AL-ADMM, ALP-ADMM and BOSVS in partially parallel image reconstruction. From top to bottom:
performances of algorithms in instances 1a and 1b. Left: the objective function values vs. CPU time. The straight line at the
bottom is f(xtrue). Right: the relative errors vs. CPU time.
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Fig. 5: Comparisons of AL-ADMM, ALP-ADMM and BOSVS in partially parallel image reconstruction (cont’d). From top to
bottom: performances of algorithms in instances 2a and 2b. Left: the objective function values vs. CPU time. The straight line
at the bottom is f(xtrue). Right: the relative errors vs. CPU time.
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Fig. 6: Comparison of AL-ADMM, ALP-ADMM and BOSVS in partially parallel image reconstruction. From top to bottom:
Reconstructed images and reconstruction errors in instances 1a and 1b, respectively. From left to right: AL-ADMM, ALP-ADMM
and BOSVS.
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Fig. 6: Comparison of AL-ADMM, ALP-ADMM and BOSVS in partially parallel image reconstruction (cont’d). From top to
bottom: Reconstructed images and reconstruction errors in instances 2a and 2b, respectively. From left to right: AL-ADMM,
ALP-ADMM and BOSVS.
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